

i

RecordTop Records,

an E-Commerce Application

by

Justin M. Gruen

A report submitted to

The Department of Computer Science

Washington College

In Partial Fulfillment of the Senior Obligation for the Degree of

Bachelors of Arts

Major Subjects:

Computer Science

Approved by:

Dr. Kyle Wilson, Thesis Advisor

Dr. Shaun Ramsey, Department Chair

ii

Contents

Contents ii
1 Introduction ... 1

1.1 Inspiration... 1

1.2 Overview .. 1

2 User Stories .. 5

2.1 What are User Stories? ... 5

2.2 Proposition Statement .. 6

2.3 Hobbyist – Jonathon Grapes the College Sophomore .. 6

2.4 Collector – Dr. Steven Applebottom the Collector .. 7

2.5 Administrator – Max Daisy Bailey, the Business Administrator 8

3 Front-End, How Does it Work? .. 9

3.1 Libraries, Dependencies, and APIs .. 9

3.3.1 React ... 9

3.3.2 Material-UI ... 10

3.3.3 Firebase ... 10

3.3.4 Recompose .. 10

3.3.5 Stripe Checkout ... 10

3.3.6 Axios ... 11

3.2 Firebase .. 12

3.3 Administration .. 13

3.4 Product Catalog .. 18

3.5 Checkout & Stripe Back-End ... 20

4 Reflection ... 22

4.1 Challenges .. 22

4.2 Future Ideas .. 23

5 References .. 26

1

1 Introduction

1.1 Inspiration

I remember when I first arrived at Washington College. The grass was damp and the sky was

gray from rain the night before. Despite that there was a definite excitement in the air as I

hurried to my first class, excited for what lay ahead. Four years later as my journey from the

schoolyard to the real world draws to a close that excitement I once felt had come back more

prominent than ever. Countless possibilities lay ahead, and the world is my oyster, ready for

me to build a pearl from. Unfortunately, though, from that excitement comes a paralyzing

fear of indecision and worry. With so many possibilities, what if I make the wrong choices?

One day, when I look back on everything I have done, how could I regret the least?

After a lot of introspection, I realized grown as I had through my four years, there

was still a confidence missing; a confidence in my computer science abilities and a

confidence in what I had learned. I have earned my degree, but am I worthy enough to be

called a computer scientist? Do I have the knowledge and wherewithal necessary to prove

both hirable to others and an accomplishment to myself? I was not sure how to go about

doing so when it dawned on me my Senior Capstone was coming up, where I choose my own

project and see it through. And so, with that motivation, I decided for my project that I would

build a website from the ground up; my senior capstone idea was born.

1.2 Overview

As previously mentioned, the goal of this project was to create an e-commerce application

that could be used by a small business. In this case, I decided to focus it for a business I made

up for the project called RecordTop Records, a small business that manages and distributes

vinyl records. Vinyl records are an older medium of sound storage stored in microgrooves

2

on the records that can then be played on a phonograph to produce music. Hence, while not

often played, vinyl records are often sought after by hobbyists, collectors, and older

generations alike. For reference, going forward I will alternate between the use of ‘the store’

and ‘the website’, but unless specified otherwise, they both refer to the website I made for

the capstone project.

A website is often made up of two overall categories called the front-end and the

back-end. Front end processes are logic run client-side that are focused on users. This can

mean any type of user, or in the case of this website, a customer or business administrator.

Although we will go more in-depth into it later, logic being run client-side means logic being

loaded and ran on the user’s computer. This can range from displaying the webpages

necessary, to accessing databases, to even adding or subtracting data or displaying the right

colors.

Back-end processes refer to the logic that occurs on a server and not seen by the

users. For instance, Firebase, the service I use to store data, is a back-end service. I run calls

to it from my front-end and the data is sent to their back-end server where it is processed.

Data should not be processed and held in a database on the front-end for security reasons:

running that data on a client’s computer could allow the client to view and edit it, which

would be a huge issue for multiple reasons, not to mention the egregious violation of trust

should a user be allowed to view other user’s personal information. In addition, back-ends

are run constantly where front-end code is only running when the website is loaded. For my

store this would not matter as much, but in others where they need to be constantly calculating

or retrieving and updating data it can be.

It is worth nothing that although I structed my front-end and back-end a certain

way, a lot of processes run client-side are not limited to only being able to be ran on the

client. Although I access the firebase service from my front-end, I could also send the data

to a back-end server of my own, and then have that send to the firebase service from there.

3

In my case though this would ultimately slow it down. I send and retrieve data from Firebase

in almost every component of my website. All those requests already take up time and adding

the middle step of sending it to my own back-end server first only adds more. It is much

faster to just access it directly from my front-end. In addition, there are some cases where the

functions available to me are greatly diminished by only using client-side logic. Stripe, the

payment processing software I use, is accessed from a back-end server I created. While it has

the ability to be ran from the client, because it is not as secure I would be locked out of much

of the Stripe service; this includes the ability to use coupons, discounts, one-time payments,

and more.

Regarding the functionality, I mentioned that the website is intended for two types

of users: customers and administrators. For customers, my website provides functionality for:

a) Creating a user account with an email and password, a google account, or both.

b) Editing their account information as needed. This means linking or unlinking

google accounts/email and pass accounts, changing their password within their

account, or, if they forget their password and can’t login, requesting an email to

change it.

c) Browsing through available products by searching, filtering, or just perusing.

Each product consists of a name, a price, a genre, and a picture.

d) And finally, purchasing the products themselves by adding them to a checkout

cart and paying for them with real-world money.

Administrators, or those in charge from a business-end, can view and edit users

and products. In the case of users, administrators are only allowed to change their registered

names. Anything else would be a huge breach of privacy and violate the trust of the users.

In the case of the products, these consists of the name of the record, its price, its genre, and

a picture of it. Administrators can view this information as well as edit or delete any of the

4

products as needed. Unlike users, administrators have full control over products as the

business needs to oversee creating and removing products from the site as needed.

5

2 User Stories

2.1 What are User Stories?

User stories, most used in the AGILE framework of software development, are a collection

of thoughts from various potential user perspectives. The purpose of user stories is that, by

articulating how users may desire to use our product for their own needs, we as developers

gain a better understanding of a project’s scope. According to Atlassian Agile Coach, it also

a) Keeps focus on the users, rather than functionality not needed,

b) Enables collaboration between team members as they decide how best to serve

the user,

c) Drive creative solutions, encouraging developers to think critically and creatively

how to solve tasks,

d) Create momentum and driving developers forward through the small goals

completed within each user story. [1]

Generally, before user stories are created, a proposition story is generated intended

to lead the thought process for all personas developed, in addition to a short one sentence

description of each persona. Afterwards, each personal is more thoroughly fleshed out with

a short description before finally assessing their needs regarding the software being

developed.

6

2.2 Proposition Statement

For potential customers who are looking to purchase vinyl records, RecordTop Records is an e-

commerce application that provides users with a way to easily search through and purchase

records. Unlike other online vinyl record stores, our product was developed to look and function

as cleanly as possible with the user in mind.

Potential Users

1. Jonathon Grapes the college sophomore

2. Dr. Steven Applebottom the collector

3. Max D Bailey, the business administrator

2.3 Hobbyist – Jonathon Grapes the College Sophomore

Jonathon Grapes is a 19-year-old college sophomore attending Washington College. He is a

computer science major and swordplay enthusiast. After attending classes every day, he

enjoys attending the various clubs offered around campus and, later in the evening, spending

time with his friends and watching movies. Jonathon was also very close to his grandfather,

who helped him found his love for older varieties of music and purchased Jonathon his own

record player before he had gone off to college so he can still listen on his own. While he

enjoys living in Chestertown, there are no record stores in the neighborhood and Jonathon is

forced to look online to purchase new music.

 Problem Scenarios Value Proposition

1 Needs a way easily browse through

different records

Provide a filter to search through records

2 Needs to be able to easily pay for his

records

Offer a simple checkout process

7

2.4 Collector – Dr. Steven Applebottom the Collector

Dr. Steven Applebottom is a 37-year-old neurosurgeon at The Johns Hopkins Hospital. Being

a neurosurgeon is Dr. Applebottom’s dream job and he would like to do it for many years,

but its high stakes causes him a lot of stress. As a result, Dr. Applebottom keeps simple

hobbies to help him focus on things besides his jobs; one of these hobbies is record collecting.

Dr. Applebottom does not listen to the music but enjoys the prestige that comes with having

so many records as well as the hunt of looking for new ones. Thankfully, his position as a

neurosurgeon awards him enough money where he can enjoy this variety of hobby. Dr.

Applebottom, in his search, especially enjoys looking through user listings or independent

businesses to look for rarer or unique vinyl records that he would not otherwise.

 Problem Scenarios Value Proposition

1 Would like to be able to purchase more

than one record at a time

Offer a checkout cart that can manage

multiple items

2 Needs records shipped carefully in

excellent condition

Add a description of shipping precautions

that we take

3 Would like to be able to easily keep

track of purchases

Show a user their previously purchased

items on their account page

8

2.5 Administrator – Max Daisy Bailey, the Business Administrator

Max D Bailey is 38, has three dogs, and graduated from college with a major in English.

After publishing his first novel, he realized that the long hours were not for him and instead

moved to the private business sector. Eventually, he found joy in a career of keeping track of

company inventories. His company, and by proxy the customers, depends on him to maintain

track of all the records they have available and update the website with their current stock as

needed.

 Problem Scenarios Value Proposition

1 Needs to keep track of item stock Offer a table to view current items

2 Sometimes inputs incorrect information

for items

Offer a way to edit items already placed into

the table

3 Has to keep track of user count to ensure

growth

Offer an administrative dashboard that

could allow administrators to easily view

numbers of users and items, along with

other helpful information

9

3 Front-End, How Does it Work?

3.1 Libraries, Dependencies, and APIs

When writing code, there are two essential principles of programming that all programmers

follow: don’t be ashamed to Google that which you don’t know, and if the code exists, don’t

feel like you have to reinvent the wheel. To focus on the second principle, it essentially means

if you can, it is better to use someone else’s code rather than spend hours creating your own

version of the same thing. In the end, it could save hundreds of hours developing code not

needed. This is the reason libraries were invented. Libraries in the context of programming

are a collection of functions reusable by other programs. In this way I can use a behavior

without having to implement it myself.

Using libraries, I can devote more time to the unique aspects of my project. These

libraries when used in code can come in the form of dependencies, libraries needed for the

code to work, or as APIs, code used to access features in a service such as another application

or server. In my website both dependencies and APIs were used in its development in both

the front-end and back-end. The following sections describe the six libraries I used.

3.3.1 React

React is a front-end library used in building user interfaces through reusable pieces of code

called components. Components follow an object-oriented style of programming, meaning

that developers can create larger components that are made up of smaller components. In

addition, React allows for one-way data flow from parent to child components through a

props object that represents the data being passed. Each component can maintain their own

state, or dynamic data, and their own methods. In addition, React offers the use of JSX, a

JavaScript syntax extension that makes it easier to work with data and HTML objects in

React components.

10

3.3.2 Material-UI

Material UI is a React framework that provides custom components in the form of unique

components such as Drawers or Tables, or more intuitive versions of already existing HTML

objects such as Buttons and TextFields. Material-UI components also provide the benefits of

a styled-components style CSS and are self-supporting (they don’t require a global style-

sheets).

3.3.3 Firebase

The Firebase library is an API to the back-end platform Firebase, developed by Google, that

make it easier for developers to create mobile and web applications. Specifically, for my

project, I use Google’s Firebase email authorization system, the NoSQL Firebase Realtime

Database, and Firebase storage to hold images. Together I can efficiently store, update, and

retrieve user and product data at will.

3.3.4 Recompose

Recompose is a precursor to React hooks that makes working with higher order components

easier to use. Higher-order components are functions that take in a component and return a

new updated one (such as with a new prop as I will explain in the next section). In the case

of my project, I use its compose() utility function to easily run a component through multiple

higher-order components at once.

3.3.5 Stripe Checkout

The Stripe API is responsible for accessing the functionality of the back-end service Stripe.

Stripe is responsible for processing purchases and charging user’s a debit or credit card.

Stripe Checkout, the library I am using, is a simpler version of the full Stripe API that allows

quicker setup of Stripe while maintaining most of its functionality.

11

3.3.6 Axios

Axios is a promise-based HTTP client for the browser and Node.js that essentially acts as a

mailman between the front-end and back-end of an application, whether that be a user-made

backend or a back-end service. In the case of this project, I use it to submit product and

customer information to the backend which the Stripe API then sends to the Stripe service.

12

3.2 Firebase

The most central piece to the front-end of the website is the Firebase class. By creating a

Firebase object with the methods to access it inside, I can easily and safely access the Firebase

service. The constructor of the Firebase object contains the reference to access each Firebase

service I need: the Email Authentication Provider, the Authentication, the Database, the

Storage, and the Google Authentication Provider.

Figure 1: Firebase Class Constructor

I send this object to each component that needs to access the Firebase through React

context and higher-order components. React contexts are intended to simplify sending props

to multiple children. Normally, you would have to pass the props down from parent to

children all the way down. Using contexts, I can create a Firebase Context using const

FirebaseContext = React.createContext(null), export it to the top parent component,

and call the provider as shown in the image below:

Figure 2: Firebase Context Provider

13

Next, higher-order components in React are functions that take a component and

returns a new component. In this case, I have one called withFirebase that takes in a

component as a prop, calls the context consumer now containing the Firebase, and creates a

new component with the firebase props passed to it as shown below:

Figure 3: Firebase Context Consumer

Now, if I need a component to access the Firebase, I can simply import and call

newcomponent = withFirebase(component) and retrieve the Firebase object as a regular prop.

Passing through both the methods allows me to easily pass the Firebase object only to classes that

need it.

3.3 Administration

Once a user registers and verifiers their account with administrator privileges, they can access

the Administration component of the website. Here is where the administrator can manage

users and products. Using the on() function from the Firebase library, it will pull a list of

current entries as well as keep a connection open to the database so that when an entry is

added or edited, the table will automatically update to show the new information. On the

following page is an image of the user table:

14

Figure 4: User Table

The table only allows the administrator to edit the user’s name, does not allow them

to view or edit the user’s password, and does not allow users to be deleted. Anything else

would be a large breach of trust and privacy. The product table, on the other hand, is more

complex as it also uses the Firebase storage service in addition to providing the administrator

with more abilities to efficiently manage inventory. It allows the administrator to not only

add or delete entries, but also edit any information about the products.

Figure 5: Product Table

15

In a more in-depth explanation, below are the popups for adding and updating entries,

respectively:

Figure 6 & 7: Item Add Pop-up & Item Update Pop-up, respectively

The table maintains a state holding whether the user clicked “Add New” or the edit

button. This way, when a user clicks the add button, the pop-up will display as empty as

shown on the left. If a user is editing information, however, it tells the popup to instead

display information of the item being edited as shown on the right. In addition, it also tells

the form whether to add a new item by using the push() function or update() function.

 Originally, the form will display the image from the image url found in the

entry. When a user changes the image to something else, I use JavaScript’s FileReader()

object to display a preview of the image, as it has no regular link it can be displayed from. I

am unable to provide a full path instead to the image object due to security reasons; the

browser cannot access the file system.

16

After an entry is done having its information added or edited, the website runs the respective

process. Shown below is how new items are added:

Figure 8: Firebase Product Upload Process

To be able to also upload a link for the image to the product entry, it uploads the

image to the Firebase storage and retrieves a link first before finally pushing all the

information it has to the database.

Updating an entry is similar except that to keep the storage tidy the code first checks

whether the current image held in the state is the same as the image being uploaded. If it is,

then the image is unchanged and it can just update the other information. If not, it runs a

check to see whether any other entries are currently using the image before deleting it. A

similar check is ran when deleting a product entry. Afterwards, it calls the same process for

adding an item except it calls the update() method instead of push(). The total code for

updating an entry is shown on the following page:

17

Figure 9: Firebase Product Update Process

18

3.4 Product Catalog

The catalog component is responsible for displaying all the product entries in the

database. I call attention to it to discuss how each product is displayed. In CSS, a single grid

is a two-dimensional layout system for HTML objects to be displayed in a row or column.

Creating nested grids, or grids within grids, allows for rows and columns. For example, a row

of columns. Shown below is a visual example of the difference between the two:

Figure 10: Grids vs Nested Grids

Using this method comes with one caveat though; I can only load data into one

column at a time. This means that if I loaded 6 items, it would be displayed like this:

Figure 11: Original Nested Grid Solution Results

19

Not an issue when a user does not care about the order, but it bothers me as the

developer. To remedy this, I divide the initial array list into an array matrix, as shown on the

follow page:

Figure 12: Current Nested Grid Product Solution

Essentially I place an item into the first array, then the second into the second

array, then the third into the fourth array, and then it loops back so the fourth item goes

back into the first array, and it ends up looking like how we’d expect it to like this:

Figure 13: Current Nested Grid Solution Results

Finally, sometimes either or both last two columns may contain less items than the

first. Because grids are meant to be dynamic, the shorter columns will end up spacing the

items in a different way, like the following diagram:

20

Figure 14: Differently Sized Grids

To fix this, I check if either column has less items than the first. If so, I push a

null item onto that column’s list so it is consistent with the first column. Then once the

website displays the grid, if it sees an object is empty, it will instead create an empty grid

item, so it ends up looking like how the user would expect it to.

Figure 15: Corrected Grid with Different Sizes

3.5 Checkout & Stripe Back-End

The last major piece important to the website is the checkout process. As previously

described, the store uses the Stripe Checkout library to charge a user’s debit or credit card.

This takes place over both the front-end and the back-end. In the front-end, once a user clicks

the “Add to Cart” button beneath the product they want, the website sends the data to their

user entry in Firebase. I use Firebase to hold cart items so it can persist between sessions

21

should a user decide to come back to the website later. The downside to this unfortunately

means that unless they delete their account or remove the items from the cart themselves,

they will always be in there which can be annoying.

 After the user decides they are finished adding cart items, clicking the checkout

button retrieves the items from the user’s database entry and opens the Stripe Checkout card-

entry form. The information entered, along with the calculated total cost, is sent to the server

back-end through Axios by using Axios.post(). Axios is a library that can transfer data

between my front-end client and back-end server. After the back-end receives the data it

creates a charge and sends the data using stripe.charges.create() where Stripe can

automatically process the request and charge the user the amount owed.

22

4 Reflection

4.1 Challenges

Throughout the course of the project, I faced many difficulties as I learned to build a complete

storefront website from the ground up. Likely the greatest of these challenges was learning

to scope and not overextend. I found it extremely easy think of a cool functionality I could

include and begin doing so, only to later wonder whether it was necessary and ultimately take

it out. Learning to visualize the end goal of my project was an obstacle that challenged me

until the very end. For instance, as previously explained, the administration section is made

up of a section for users and another for products. To be able to easily switch between the

two, I thought it would be cool to implement a nice looking swipeable tabs component that I

had found. However, after spending a couple of hours with it I realized it did not make any

sense.

I had previously decided that the administration component would be intended only for

use on a computer, therefore if I used the swipe feature I would have to spend even more

time fixing the component’s design to work on mobile, as that is the medium it is intended

for. In addition, the bar holding the tabs did not fit in with the style of the rest of the page. It

would look nice by itself maybe, but with another bar already above it, the navigation bar, it

looked sorely out of place. However, these challenges were helpful. It was in situations like

this I was forced to sit and think about the product and truly decide how I wanted it to

ultimately be shaped.

Another major challenge I was faced with was deciding which checkout API to use.

Although I used the Stripe API as previously mentioned, for almost a week I was stuck

between Stripe and another called SnipCart. Personally, I thought Stripe looked and

functioned better from a user’s perspective, but it required me to spend time creating a

backend server as it required. SnipCart, on the other hand, had an easy-to-implement

23

functionality as well as could automatically handle multiple items in a checkout cart, but

ultimately in my opinion looked worse. It took nearly a week of research and indecision

before ultimately deciding to use the Stripe API. While SnipCart was easier to implement

and could already handle multiple items, Stripe is an industry standard and I decided that the

extra time would be worth the knowledge gained.

4.2 Future Ideas

While the project itself is finished, should I come back to this someday, there are plenty of

directions that I can take it in. The first of these would be to add more functionalities directed

towards customers, such as customer reviews, a list of previously purchase products, and a

list of recommended products on their account component. Customers may find these helpful

if they are looking for similar products to purchase but searching by musician or genre aren’t

sufficient. Perhaps I could filter this recommended list by what other people who purchased

similar items would also purchase, or perhaps I could implement a mini quiz asking the user

questions about their interests and from there generate a list.

 Another idea I could implement is expanding product information. As of now

it only allows to a product name, a price, a main genre, and a picture. Not only do albums

often have multiple genres, but it is set up where administrators must type in the genre. If

they misspell the genre and are unaware, the disc will not show up when customers or

administrators filter by the genre, and the mistake may go unnoticed. To these extents,

implementing a dropdown with set genres allows to multiple genres to be selected would be

more helpful. In addition, as previously explained, the reason administrators can freely type

in the genre in the first place is because I may not be able to account for them all should I

create a dropdown. Instead, maybe at the bottom of the dropdown or elsewhere I could

provide an option for the administrator to add a new genre. This would easily allow the

developer, myself, to not need to account for all possible genres; they can be added as needed.

24

Similarly, on the topic of item information expansion, putting a stock counter

would also be helpful. This way it makes it easier to keep track of the number of records in

inventory without the need for a third-party software, as well as make it easier to notify

customers when inventory is low. It could even be set up for administrators to be able to set

a point where inventory is low per item, and the store will automatically create a warning

beneath an item in the catalog as well as email myself or a business manager, for example,

that the inventory is below the certain point.

Next, I would like to use cookies or other local storage options to allow customers

to purchase products without needing to be signed in. Currently, I maintain user’s current

cart items in the Firebase storage within each user. This allows me to hold a user’s cart items

even after they log out, but it means the user needs to be signed in so it knows which user is

looking to purchase which items. Else, I currently have no way implemented to hold the cart

items list. Instead, utilizing some form of local storage would allow even unsigned-in users

to purchase records.

Finally, even though the website loads relatively fast, and each component loads

near-instantaneously, I think it would be a good idea to convert from a React application to

a Next application. While React is CSR, or client-side routing, Next builds on React and has

SSR, or server-side rendering. SSR is another method of rendering websites that preloads the

page, whereas React normally requires webpages to be loaded and rendered client-side.

Upsides to SSR include better search engine optimization with Google due to how they scan

websites and accomplish their indexing, as well as smoother loading, but also means a slight

delay between components as each one is loaded. You might argue that CSR, in the case of

my website, works extremely well because there is essentially no loading between switching

components (this does not refer to loading accomplished when data is pulled from Firebase).

However, in my opinion, it feels unnatural. Even though users prefer the shortest time

possible, I feel that the quick loading makes it feel almost too fast, and not like a real website.

25

For instance, the catalog page loads product pieces, and then loads the image afterwards

giving it an unpolished feel. SSR would allow the page to be fully loaded before showing it

on the user’s screen.

26

 References

[1] Rehkopf, Max. “User Stories: Examples and Template.” Atlassian Agile Coach, 2020,

www.atlassian.com/agile/project-management/user-stories.

[2] Weiruch, Robin. “A Firebase in React Tutorial for Beginners [2019].” RWieruch, 26

Nov. 2018, www.robinwieruch.de/complete-firebase-authentication-react-tutorial.

[3] Weiruch, Robin. “React Firebase Authorization with Roles.” RWieruch, 26 Nov. 2018,

https://www.robinwieruch.de/react-firebase-authorization-roles-permissions.

[4] Weiruch, Robin. “React Firebase Auth Persistence with Local Storage.” RWieruch, 27

Nov. 2018, https://www.robinwieruch.de/react-firebase-auth-persistence.

[5] Weiruch, Robin. “Social Logins in Firebase React: Google, Facebook, Twitter.”

RWieruch, 02 Dec. 2018, https://www.robinwieruch.de/react-firebase-social-login.

[6] Weiruch, Robin. “How to link Social Logins with Firebase in React.” RWieruch, 06 Dec.

2018, https://www.robinwieruch.de/react-firebase-link-social-logins.

[7] Weiruch, Robin. “Email Verification with Firebase in React.” RWieruch, 20 Dec. 2018,

https://www.robinwieruch.de/react-firebase-email-verification.

[8] Weiruch, Robin. “How to use React Router with Firebase.” RWieruch, 01 Jan. 2019,

https://www.robinwieruch.de/react-firebase-router.

[9] Weiruch, Robin. “How to use Firebase Realtime Database in React.” RWieruch, 16 Jan.

2019, https://www.robinwieruch.de/react-firebase-realtime-database.

[10] Weiruch, Robin. “Accept Stripe Payments with React and Express.” RWieruch, 20 Jan.

2017, https://www.robinwieruch.de/react-express-stripe-payment.

[11] CodAffection. “Complete React Material UI Tutorial Introduction.” Youtube,

commentary by Shamseer, 16 Nov. 2020, https://youtu.be/m-2_gb_3L7Q.

http://www.atlassian.com/agile/project-management/user-stories
http://www.robinwieruch.de/complete-firebase-authentication-react-tutorial
https://www.robinwieruch.de/react-firebase-authorization-roles-permissions
https://www.robinwieruch.de/react-firebase-auth-persistence
https://www.robinwieruch.de/react-firebase-social-login
https://www.robinwieruch.de/react-firebase-link-social-logins
https://www.robinwieruch.de/react-firebase-email-verification
https://www.robinwieruch.de/react-firebase-router
https://www.robinwieruch.de/react-firebase-realtime-database
https://www.robinwieruch.de/react-express-stripe-payment
https://youtu.be/m-2_gb_3L7Q

